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Abstract

The effect of a rotating magnetic field (RMF) on the stability of a fluid contained in a cylindrical column and heated
from below is investigated. The RMF increases the critical Rayleigh number for asymmetric flow modes but does not
affect the onset of instability for axisymmetric modes. The critical Rayleigh number is dependent upon the relative
penetration of the magnetic field into the cylinder and the Prandtl number of the fluid. Instability first develops in the
form of a single asymmetric meridional roll rotating around the axis of the cylinder, driven by the azimuthal component
of the magnetic field. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

A,,, coeflicients in velocity field representation
b time and angular independent magnetic field com-
ponent

B magnetic field

C,.. coefficients in temperature field representation
D ber3(K)+beil (K)

F  Lorentz force

g acceleration of gravity

Ha Hartmann number

j electric current density

k continuous modal index

K skin depth parameter, r,/d

L operator, (0/0r)(1/r)(0/0r)r

L,, operator, (0°/0r*)+ (1/r)(0/0r) — (m?[r)

m, n discrete modal indices

M matrix

P Prandtl number

P, pressure

¢.» normalization coefficients

r radial coordinate

f unit radial vector

Ra Rayleigh number

Ra®  critical Rayleigh number

Rm magnetic Reynolds number

t time

T temperature

* Corresponding author
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T. constant reference temperature
Tm magnetic Taylor number

Tm* critical magnetic Taylor number
v fluid velocity

V' perturbation fluid velocity

z axial coordinate

7 unit axial vector.

Greek symbols

o coefficient of thermal expansion
fp temperature gradient

P.. eigenvalues

0 skin depth

o,y delta function

k thermal diffusivity

Ly permeability of free space

v kinematic viscosity

p density

¢ electrical conductivity

¢ azimuthal coordinate

¢ unit azimuthal vector

o angular frequency of magnetic field
@ characteristic fluid rotation frequency
Q angular velocity of fluid, v, /r.
Subscripts

r radial component

z axial component

¢ azimuthal component
0 reference level.
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1. Introduction

The application of an RMF has proven to be quite
beneficial for a number of solidification processes. In
particular, single crystal growth experiments have dem-
onstrated an improvement in the grown material when
an RMF was applied [1-3]. An RMF can reduce sedi-
mentation, enhance the stirring of multicomponent
liquids, and increase thermal symmetry at the sol-
idification front. These benefits are closely linked to the
flow patterns that an RMF induces. As a result, there
have been several theoretical [4-8] and experimental [9—
13] investigations on the fluid flow generated by an RMF.
These investigations have examined laminar flow, tur-
bulence and the criterion for the onset of Reynolds insta-
bility. In this paper we investigate the onset of Rayleigh—
Benard convection in a vertical cylinder when an RMF
is applied. Such a convection can play a significant role in
a number of crystal growth processes and can introduce
inhomogeneities and other deleterious effects in the
grown crystals. Thus, an understanding of the effect that
an RMF has on thermoconvective instability can be quite
important.

The problem of thermoconvective stability in a cylin-
der, both with and without cylinder rotation, has been
previously addressed [14—-16]. The effect of an RMF on
thermoconvective stability in a cylinder is somewhat
analogous to that of cylinder rotation. Whereas for cyl-
inder rotation the critical Rayleigh number is determined
as a function of the Taylor number, for the application
of an RMF the critical Rayleigh number is determined
as a function of the magnetic Taylor number. The appli-
cation of an RMF also involves a second independent
variable which is the relative penetration of the magnetic
field into the fluid, as characterized by the skin depth.
However, the application of an RMF results in a flow
pattern significantly different than that obtained by cyl-
inder rotation. This is a result of the different boundary
conditions at the cylinder wall. For cylinder rotation, the
angular velocity of the fluid at the wall is equal to the
applied angular velocity of the cylinder. When an RMF
is applied, the angular velocity of the fluid is zero at the
cylinder wall. The flow generated by an RMF is similar
to cylinder rotation in yet another respect. For two con-
centric cylinders of similar radii, there will be a critical
value of the Taylor number where instabilities occur.
When an RMF is applied, there will be a critical value of
the magnetic Taylor number where instabilities of the
Taylor vortex-type might also be expected. This paper is
concerned with flow below this critical value, where
Stokes flow or weakly non-linear flow exists.

This paper first presents the magnetic field, electro-
magnetic force, and fluid flow generated by an RMF in
an isothermal vertical cylinder [5]. The dependence of the
electromagnetic force and fluid flow on the skin depth is
examined. The onset of steady thermal convection is then

calculated, using linear stability analysis and the Bous-
sinesq approximation. The solutions to this problem are
based on expansions of eigenfunctions which are them-
selves solutions to the thermoconvective stability prob-
lem without an RMF applied. The nature of the con-
vection and temperature distributions at the onset of
convection are described. Finally, the limitations of the
calculations and the circumstances of their applicability
are discussed.

2. FElectromagnetic field equations

We consider an incompressible liquid metal of elec-
trical conductivity ¢ inside a cylinder of infinite vertical
extent and radius r,. A rotating magnetic field with an
induction B, and angular frequency w is applied to the
fluid. It is convenient to work with complex numbers,
with the real parts corresponding to the physical quan-
tities. As r — o0, the imposed magnetic field can be writ-
ten as
B, ={—ip)B,e" " (M
where ¢ is time and f and ¢ are unit vectors in the cyl-
indrical coordinate system. The cylindrical coordinates
(r,@,z) used to describe the system and the imposed
external magnetic field are shown in Fig. 1. The magnetic
field and resulting fluid flow are confined to the (r, @)
plane.

The advection—diffusion equation describing the mag-
netic field distribution inside the cylinder is

1

g

B
5, = Vx(xB)+ VB ©)

where v is the fluid velocity and g, is the permeability of
free space. The ratio of the convective to diffusive terms
scales as the magnetic Reynolds number

Rm = pyorgyv. 3)
When Rm is small compared to unity, the v x B term can
be neglected. This is the case for most practical laboratory
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Fig. 1. Schematic of the physical system. The cylinder is filled
with liquid metal and the applied external magnetic field B,
rotates with angular frequency o in the ¢-direction.
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applications and corresponds to the situation where the
influence of the fluid flow on the magnetic field can be
neglected. This so-called ‘solid body approximation’ will
be adopted here. We seek a solution of the form

B=Bfi+B,p “)
where
B, =b,(r)e"?, B, =b,(r)e" . 5)

The solution must satisfy equation (1) and B must be
continuous at . Also, from the symmetry of the problem,
B
oz
The total magnetic field can then be calculated from the
following equations:

B.=0. (6)

V’B=—-B, V-B=0, forr<r, %
52

VxB=0, V:B=0, forr>r, ®)

where the skin depth 6 = (cwu,) "' The solution for the
magnetic field distribution inside the cylinder is

r .
J] (7637[’"4)
, _ 2Bod 0 _ 2By ber, (r/d) +ibei; (1/6)
T e Jo(Ke¥ 4y pedm ber, (K) + i bei, (K)
)

>
Il

0
4 - la(rbr')

—2iB, ((ber0 (r/0) +ibei, (r/d))

—e$§ (ber, (r/3) + i bei, (r/5))>

ber, (K) + i bei, (K) - (19)

Outside the cylinder

b — B, Byri <1 B %(berl (K) +ibei, (K)) > (an
P\ e K(bery (K) +ibeig(K)
by = —iBo+ iByri <1_ 2(ber, (K) +ibei, (K)) )
r? e*™* K(ber, (K) + i bei,y (K))

(12)
where K = ry/0 is the dimensionless skin depth parameter
and Jy and J, are Bessel functions. The real and imaginary
parts of J,(x &™) are denoted by ber, (x) and bei, (x).

The induced electric current density is calculated from
the equation

1
j=—VxB. (13)
Ho
The only non-vanishing component is
. —2B,e™"* (ber, (r/d)+ibei, (r/d) o)
.= : e .
J: 1100 ber, (K) +i beiy (K)

(14)

The two non-vanishing components of the Lorentz force
are obtained from the following formulas:

F, = —Re(j) Re(B,). F, = Re(j.) Re(B,). (15)

These equations result in both a time-independent com-
ponent of force and an oscillatory component of fre-
quency 2w. The oscillatory component of the force
induces, in general, an oscillatory motion of the fluid.
However, the inertia of the fluid will not allow it to follow
the relatively high frequency oscillating force component
and the amplitude of the oscillating flow will be negligible
[17]. The time averaged value of this oscillating force
component can also be non-zero due to the presence
of the nonlinear advection term in the Navier—Stokes
equations. However, for purely azimuthal flow, this
advection term is zero, and therefore the oscillating force
will not generate any stationary flow components. The r-
component of force is compensated by a change in the
pressure and does not affect the fluid motion. Thus, the
only force which drives fluid motion is the time-inde-
pendent ¢-component

7o 27B§ (ber% (1‘/5)+bei%(r/6)>
" Hor \ ber2(K)+bei2(K) )
The dependence of F,, on r for three different values of K
is shown in Fig. 2. F, is normalized by
_ 2B}
Moo

For small values of K, F, is a linear function of r. As K
increases, the force is confined more and more to near
the cylinder wall. It should also be noted that for each

value of r < r,, there is a finite value of K for which F,,
reaches a maximum.

(16)

Fy an

3. Azimuthal fluid flow

The azimuthal velocity is independent of both ¢ and .
The Navier—Stokes equation can be written:

1 T T T T
08
6 F ]
e 0T
S L
w L ]
0.4 K=3
0.2 K=1 -
[ K=10 ]
0 1 | - | I
0 0.2 0.4 0.6 0.8 1
r/r

Fig. 2. Azimuthal Lorentz force vs. r.
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F,
Ly, =—-2 18
b= =0 (s)
where v is the kinematic viscosity, p is the density, and
Sorror
The solution to equation (18) can be written
_uKra (=) KT 0
o = roD =, 2n+1)(n+1)/(n+1)!2n+1)!
where
B%"o
= 21
Vo 1619vp (21

and D = berj(K)+beil(K). In the low frequency
approximation, only the leading term of the series expan-
sion needs to be kept:

Biwo
v, = 712‘}[) r(r§ —r?). 22)
In the high frequency approximation, when K > 1,
B? - v
Dy =~ (r—roe_v/z"<1 —a)) (23)
K?vpu,

Both the magnitude and frequency of the applied mag-
netic field can be modified to affect the fluid flow. These
properties of the magnetic field have been separated in
equation (20) with v, cc BZ and K oc ™" By keeping v
constant, the dependence of v, on K can be determined.
This is shown in Fig. 3, where v;™* is plotted as function
of K. The maximum value of v, occurs at different values
of r, depending on K. For a fixed magnetic field strength,
the maximum fluid rotation is obtained when K = 2.35.
The dependence of v, on r is shown in Fig. 4. For K much

less than 1, v, /vg™ is essentially independent of K. As K

becomes larger, v;™ occurs at increasingly larger values
of r.

4. Thermoconvective stability analysis

We now consider the onset of natural convection in
the fluid when a negative temperature gradient is applied.

08 | E
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Fig. 3. Maximum azimuthal fluid velocity vs. K.
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Fig. 4. Azimuthal fluid velocity vs. r for K = 1 and K = 10.

The initial velocity, temperature, pressure, and density
distributions are

v,=v,=0, v, (24)
Ty=T.,—pz (25)
VP, = —po(1+apz)gi+F,F (26)
p = po(l+apz) 27

where v, is the azimuthal velocity resulting from the
application of a rotating magnetic field and is defined in
equation (20), T, is a reference temperature, f§ is the
negative temperature gradient, o is the coefficient of ther-
mal expansion, g is the acceleration of gravity, and F, is
defined in equation (15). The initial velocity, tempera-
ture, and pressure are perturbed by V’. T’, and P’, and
substituted into the Navier—Stokes and heat transfer
equations. Neglecting products of perturbation terms,
the z-component of the Navier—Stokes perturbation
equation and the heat transfer equation become

ove v, V. , 2
oT v, 0T o

where « is the thermal diffusivity. The r- and ¢-com-
ponents of the perturbed velocity do not couple to the
perturbed temperature and need not be considered
further.

The stationary spectral modes which are solutions to
this problem can be written in the form

VA ,2) = Vi) €0 ¢ e (30)
T'(r,,2) = T, s (r) €™~ ? % 4 cc (€29
where n and m are discrete modal indices, k is a con-
tinuous index, and @ is a characteristic rotational fre-
quency which yet needs to be determined. It has been
proven mathematically by Proctor [18] that the case of
k = 0 corresponds to the lowest eigenvalue for a given
set of indices (n, m). We therefore set k = 0.

Given the form of the solutions in equations (30) and
(31), equations (28) and (29) can be written
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(L, +im(Q—))V = —RaT (32)
(L, +imP(Q—a)T=—V (33)
where

2 1 2
L=l (34)

ot ror r

Q =u,/r, P is the Prandtl number, Ra is the Rayleigh
number with r, used as the length scale, Vis the perturbed
velocity in the z-direction, T'is the perturbed temperature,
and both ¥ and T are functions of r only. The above
equations are non-dimensionalized by scaling the length,
frequency, velocity, pressure, and temperature with r,
v/ra, v/ro, pv? /13, and Brov/k, respectively. Equations (32)
and (33) are solved for the case of adiabatic sidewalls
with boundary conditions

V=T=0, atr=0 (35)
=T atr=1 36
=5, =0 atr=1 (36)

We first develop a series of functions V,,, and T,
upon which the solution of V" and T will be expanded.
The functions are solutions of the following simplified
system:

Lm me = 7ﬁ/3,an,m (37)

Lm T‘n,m = - ﬁﬁ,m Vn.m (38)

where f,,, are eigenvalues to be determined. These equa-
tions describe the thermoconvective problem in a vertical
cylinder when no RMF is applied. The boundary con-
ditions (35)—(36) imposed on ¥ and T are also imposed
on V,, and T,,, respectively. The solutions of this eig-
envalue problem are

1
Vn,,m =T  — [Im (ﬁ)un)‘]m (ﬁn‘mr) - Jm (ﬁn‘m)lm (ﬁn‘mr)]
\V Gnm

(39)

1
T‘mm = — [Im (ﬁn.m)']m (ﬁn,mr) + Jm (ﬁn,m)lm (ﬁn,mr)]
\ dnm

(40)

where 7, is a modified Bessel function

qn,m = szn (ﬁn,m)lm—l (ﬁn,m)Ierl (ﬁﬂ,m) (41)

and ¢, ,, are normalization coefficients such that the above
system of eigenfunctions is orthonormal in the following
sense:

1
J I/n,m (r) T‘N,m (r)r dr = 511N' (42)
0

The eigenvalues f3,,, are solutions of the following equa-
tion:

0

The solutions of V' and T can be expanded into the
above set of functions:

V=2 AnVim T=3CpnTon (44)

where 4,,,, and C,,, are complex coefficients which need
to be determined. Using the orthonormality condition,
the following system of matrix equations are obtained:

RaCN.m = ﬁxz\’,mAN.m + lm Z An.m (CD< I/N,m | Vnem>

- < VN,m |Q| Vn.m>)a (45)
AN,m = ﬁ]z\l.m CN,m + ”nP Z Cmm ((D< TN.m | T‘n.m>

- <TNJ‘H |Q| Tn.m>)a (46)
where

1
<VN,m ‘ Vn‘m> = J VN,m Vn.mr dev <VN,m‘Q| Vn,m>

0
1

= J V@V, 1 dr, etc. 47)
0

The coefficients 4,,,, can be eliminated from equations
(45)—(46) resulting in
M(®):C = Ra-C (48)

where C is an eigenvector with elements C,,, and the
matrix elements M(®) for a given m are

MNn = Z(ﬁ]zv,méj\/[+ ima')( I/N.m | Vl,m>
!

- lm< VNJH |Q| Vl‘m>)(ﬂ/’%m6hl + lmPCD< T/,m | Tn‘m>
- in1P< TI,m|Q| T)Lm>)' (49)

Equation (48) represents an eigenvalue problem which
can be solved numerically. The matrix M(®) is shown
explicitly as a function of @ because there are actually a
pair of eigenvalues, @ and Ra‘, where Ra° represents
the critical Rayleigh numbers, which are solutions of
equation (48). Both @ and Ra® must be real, and for each
value of Ra‘ there will be a value of @ associated with it.
Numerically, we can solve equation (48) by varying @
until the eigenvalues Ra® become real. The eigenvector C
is also obtained from this procedure. By substituting the
solutions back into equations (44)—(46), V and T can be
calculated.

Before discussing the calculational results, it is useful
to describe the roles of the parameters involved. There
are three independent variables: K, the dimensionless skin
depth; P, the Prandtl number; and the magnetic Taylor
number 7m which is a measure of the azimuthal fluid
velocity induced by the rotating magnetic field where

4 n2
roBywo
Tm =

(50)
2pv?

For each set of independent variables the two resultant
eigenvalues are Ra‘ and @. The size of the matrix My,
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Table 1
Eigenvalues and critical Rayleigh numbers in a vertical cylinder
when no RMF is applied

n m B Ra*

1 1 2.871 67.96
1 2 4.259 328.9
1 0 4.611 452.0
1 3 5.541 942.5
2 1 6.145 1426

1 4 6.771 2102

2 2 7.571 3286

2 0 7.799 3700

required to accurately calculate the eigenvalues for a
given value of m increased as a function of 7Tm. For
Tm = 10°, the largest value of Tm for which the eig-
envalues were calculated, a 50 x 50 matrix was used. This
resulted in an upper bound to the error of the eigenvalues
of +0.3%.

The zeroth order solution to this problem describes the
situation when no rotating magnetic field is applied and
® = Q= 0. Then, Rd,, = f,,- The first several lowest
values of f,,, and Raj,,, are listed in Table 1. The values
of Ra;,,, agree with those obtained previously [16].

We now consider the calculational results in the low
frequency regime, with K = 0.1, and with a Prandtl num-
ber appropriate for liquid metals, P = 0.02. Figure Sis a
plot of the first few values of Ra® as a function of Tm.
The dashed lines are the value of Ra® for axisymmetric
(m = 0) motion and the solid lines are the values of Ra®
for non-axisymmetric (m # 0) motion. The indices (n, m)
are shown for the lowest several modes. As with cylinder

TRRTIT.
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-
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o
(=]

n

Tm

Fig. 5. Critical Rayleigh numbers as a function of magnetic
Taylor number. The solid (dashed) lines are for non-axi-
symmetric (axisymmetric) flow modes. The indices (n, m) are
shown for the lowest few modes.

rotation [16], the application of an RMF has no influence
on the thermoconvective stability of axisymmetric flow
modes. But the application of an RMF clearly increases
Ra‘ for non-axisymmetric modes. Figure 6 is a plot of
the eigenvalues @ which correspond to the eigenvalues of
Ra‘ for non-axisymmetric flow modes shown in Fig. 5. all
of the eigenvalues @ depend linearly on Tm for Tm < 10°.
Above that value, the eigenvalues of @ for which n =1
diverge from that linear dependence. It is perhaps useful
to discuss what @ corresponds to physically. Unlike Q, @
is not a function of r. Rather, @ is the angular frequency
with which the velocity in the z-direction and the tem-
perature profile rotate about the z-axis in the @-direction.
for Tm < 10°, @ is of the same order of magnitude as the
angular frequency Q averaged over r.

Figure 7 shows the velocity profiles at the first critical
Rayleigh number for several values of Tm. The profiles
were calculated with K = 0.1 and P = 0.02. At the onset
of convection, there is an upswelling of warmer fluid on
one side of the cylinder and a downswelling of cooler
fluid on the other. The normalized velocity in the z-
direction as a function of r is shown on the left-hand-
side. As Tm increases, the increased azimuthal rotation
of the fluid forces V' nearer the cylinder wall. On the right-
hand-side of fig. 7 is a top-down view of V., and V.,
where V..., and V;, correspond to those positions, as a
function of r and @, where V reaches a maximum and
minimum value, respectively. As Tm increases, a swirling
effect occurs. Both V., and V,,;, occur at smaller values
of @ as r decreases. It should also be noted that each of
the flow patterns observed rotates about the cylinder with
frequency @.

Figure 8 shows the lowest value of Ra® vs. Tm for four
values of K and for P = 0.02. For a given value of Tm,
Ra* increases with decreasing K. This trend continues for

Fig. 6. Rotation frequencies of non-axisymmetric thermo-
convective rolls vs. magnetic Taylor number. The values of @
correspond to the first few critical Rayleigh numbers shown in
Fig. 5.
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Fig. 7. Velocity profiles in the z-direction at the first critical
Rayleigh number for several values of magnetic Taylor number.
The left-hand-side shows the normalized velocity as a function
of r. The right-hand-side shows the position of the maximum
and minimum flow velocity as a function of r and ¢. The profiles
were calculated with K = 0.1 and P = 0.02.

(O e i A AL e

10' F

Ra’

10° F

PETTT TR RTTTY B

FRETIT EETETRETTIT B SR TTTT

10 10 10° 10* 10° 10°
Tm

Fig. 8. Critical Rayleigh number vs. magnetic Taylor number
for P = 0.02 and several values of K.

values of K down to approximately 1. For K =1, the
penetration depth of the magnetic field is equal to the
cylinder radius and further decreases in K will not
increase the average force driving fluid rotation. There-

fore, for K < 1 the dependence of Ra® on Tm does not
significantly change from that shown for K = 1. Figure 9
shows the eigenvalues @ corresponding to the eigenvalues
Ra‘ shown in Fig. 8. For smaller values of 7m,
@ oc Tm oc B}. The scaling of the roll frequency on the
magnetic strength squared is consistent with the theor-
etical predictions of laminar flow generated by an RMF
[4].

The dependence of the onset of instability as a function
of Prandtl number is shown in Fig. 10. The data curves
were obtained with K = 0.1. The figure shows the first
critical Rayleigh number, although higher modes may be
triggered first for larger 7m. Clearly, an RMF is more

104 T

FETTT BRI BT AT

102
100 pd 4ol v 4l s
10 102 10® 10t 10° 10®
m

Fig. 9. Rotation frequency vs. magnetic Taylor number for
P = 0.02 and several values of K.
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Fig. 10. Critical Rayleigh number vs. magnetic Taylor number
for K = 0.1 and several values of Prandtl number.
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effective at increasing Ra‘ for fluids with larger Prandtl
numbers. Figure 11 shows the profiles of the maximum
velocity and temperature for K = 0.1 and Tm = 10°. For
P = 0.02, the curvature in T.,,,, is less than that for V,,,,.
This is a result of the relatively high thermal diffusivity
of fluids with P = 0.02. The profile of T, also tends to
stay in close proximity to V,,,.. For P = 2, the amount of
curvature in V,,,, and T,,,, is roughly equal. A significant
angular displacement between V,,,, and T, also exists.
The relative curvature and angular displacement between
Ve and T, both vary as a function of P and 7m. Both
Ve and T, rotate about the cylinder with rotation
frequency @.

5. Discussion

The azimuthal velocity in the preceding sections was
calculated based on the assumption that the v x B term
could be neglected in comparison to the electric field
induced by the external magnetic field. This approxi-
mation is valid when [19]

Rm

Hoowry
Rm <1 forK>1. (52)

Substituting the azimuthal velocity from equations (22)
and (23) into these expressions yields

<1 forK«1 (51)

H 2
3; <1 forK«1 (53)
2Ha?

a4 <1 forK>1 (54)
K2

where Ha is the Hartmann number defined as

P=0.02

Fig. 11. The position of the maximum temperature and velocity
in the z-direction as a function of r and ¢. The profiles were
calculated with K = 0.1 and Tm = 1000.

Ha = Byro |2 (55)
pv

For typical values roy = 0.01 m, w =2nx60 s~', and

v=3x10"7 m?> s~', we find that the approximations
employed are valid when Tm < O(10°).

The stability analysis assumed a base flow state which
is nonzero in the ¢-direction. This is correct for the
presently considered geometry but is not strictly true
as the aspect ratio of the cylinder decreases. For finite
cylinders, v, and v. are also nonzero, and the ratio of v,
and v, to v, increases as Tm increases. Nevertheless, even
for Tm as large as 10°, the angular velocity of the
meridional flow is less than 2% of the base azimuthal
flow [7].

The preceding sections have addressed the issue of the
Rayleigh instability of fluid driven by an RMF. A second
form of instability which can occur is that of Reynolds
instability. The rotating fluid will become unstable at
some specific magnetic Taylor number, an effect which is
similar to that of Taylor instability in a rotating cylinder.
The critical value of 7m at which Reynolds instability
occurs is a function of the aspect ratio and decreases as
the aspect ratio increases [16]. It was found that for an
aspect ratio of 1, Tm* = 6.2 x 10°, and for an aspect ratio
of 6, Tm® = 1.3 x 10°. The calculations of Rayleigh insta-
bility and fluid flow presented here only have validity
when Tm < Tm°.

The laminar flow regime where 7m < Tm° has been
examined recently both by experiments [10] and numeri-
cal calculations [7]. Experimentally, temperature fluc-
tuations were measured at Rayleigh numbers above Ra*
as a function of magnetic field strength. The frequency
of the fluctuations corresponded to the roll frequency @.
It was found that @ oc B, for magnetic field strengths up
to those corresponding to 7m = 10*. Numerically, the
dependence of the azimuthal rotation frequency Q on
Tm changed from Q oc Tm to Q oc Tm®* for Tm > 10°.
Although the validity of the calculational results reported
here are limited to the laminar regime, it is in this flow
regime that the application of an RMF during single
crystal growth might prove to be most useful. The occur-
rence of time-dependent convection can introduce del-
eterious effects in the grown crystals. In fact, recent crys-
tal growth experiments were done with an RMF strength
small enough to avoid time-dependent convection. For
example, gallium-doped germanium crystals were grown
by the Bridgman method in an RMF with Tm = 8.5 x 10*
[3] and CdTe was grown from a tellurium solution by the
travelling heater method during the Photon 7 micro-
gravity mission with Tm = 2.8 x 10* [1]. Thus, the cal-
culational results in the laminar regime are pertinent to
understanding stability behavior during crystal growth
processes when an RMF is applied, and can serve as a
baseline to which further refinements of the theory can
be compared.
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