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Abstract

The e}ect of a rotating magnetic _eld "RMF# on the stability of a ~uid contained in a cylindrical column and heated
from below is investigated[ The RMF increases the critical Rayleigh number for asymmetric ~ow modes but does not
a}ect the onset of instability for axisymmetric modes[ The critical Rayleigh number is dependent upon the relative
penetration of the magnetic _eld into the cylinder and the Prandtl number of the ~uid[ Instability _rst develops in the
form of a single asymmetric meridional roll rotating around the axis of the cylinder\ driven by the azimuthal component
of the magnetic _eld[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

An\m coe.cients in velocity _eld representation
b time and angular independent magnetic _eld com!
ponent
B magnetic _eld
Cn\m coe.cients in temperature _eld representation
D ber1

9"K#¦bei19"K#
F Lorentz force
` acceleration of gravity
Ha Hartmann number
j electric current density
k continuous modal index
K skin depth parameter\ r9:d
L operator\ "1:1r#"0:r#"1:1r#r
Lm operator\ "11:1r1#¦"0:r#"1:1r#−"m1:r#
m\ n discrete modal indices
M matrix
P Prandtl number
P9 pressure
qn\m normalization coe.cients
r radial coordinate
r¼ unit radial vector
Ra Rayleigh number
Rac critical Rayleigh number
Rm magnetic Reynolds number
t time
T temperature

� Corresponding author

Tc constant reference temperature
Tm magnetic Taylor number
Tmc critical magnetic Taylor number
v ~uid velocity
V perturbation ~uid velocity
z axial coordinate
z¼ unit axial vector[

Greek symbols
a coe.cient of thermal expansion
b temperature gradient
bn\m eigenvalues
d skin depth
snN delta function
k thermal di}usivity
m9 permeability of free space
n kinematic viscosity
r density
s electrical conductivity
8 azimuthal coordinate
8¼ unit azimuthal vector
v angular frequency of magnetic _eld
v¹ characteristic ~uid rotation frequency
V angular velocity of ~uid\ n8:r[

Subscripts
r radial component
z axial component
8 azimuthal component
9 reference level[
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0[ Introduction

The application of an RMF has proven to be quite
bene_cial for a number of solidi_cation processes[ In
particular\ single crystal growth experiments have dem!
onstrated an improvement in the grown material when
an RMF was applied ð0Ð2Ł[ An RMF can reduce sedi!
mentation\ enhance the stirring of multicomponent
liquids\ and increase thermal symmetry at the sol!
idi_cation front[ These bene_ts are closely linked to the
~ow patterns that an RMF induces[ As a result\ there
have been several theoretical ð3Ð7Ł and experimental ð8Ð
02Ł investigations on the ~uid ~ow generated by an RMF[
These investigations have examined laminar ~ow\ tur!
bulence and the criterion for the onset of Reynolds insta!
bility[ In this paper we investigate the onset of RayleighÐ
Benard convection in a vertical cylinder when an RMF
is applied[ Such a convection can play a signi_cant role in
a number of crystal growth processes and can introduce
inhomogeneities and other deleterious e}ects in the
grown crystals[ Thus\ an understanding of the e}ect that
an RMF has on thermoconvective instability can be quite
important[

The problem of thermoconvective stability in a cylin!
der\ both with and without cylinder rotation\ has been
previously addressed ð03Ð05Ł[ The e}ect of an RMF on
thermoconvective stability in a cylinder is somewhat
analogous to that of cylinder rotation[ Whereas for cyl!
inder rotation the critical Rayleigh number is determined
as a function of the Taylor number\ for the application
of an RMF the critical Rayleigh number is determined
as a function of the magnetic Taylor number[ The appli!
cation of an RMF also involves a second independent
variable which is the relative penetration of the magnetic
_eld into the ~uid\ as characterized by the skin depth[
However\ the application of an RMF results in a ~ow
pattern signi_cantly di}erent than that obtained by cyl!
inder rotation[ This is a result of the di}erent boundary
conditions at the cylinder wall[ For cylinder rotation\ the
angular velocity of the ~uid at the wall is equal to the
applied angular velocity of the cylinder[ When an RMF
is applied\ the angular velocity of the ~uid is zero at the
cylinder wall[ The ~ow generated by an RMF is similar
to cylinder rotation in yet another respect[ For two con!
centric cylinders of similar radii\ there will be a critical
value of the Taylor number where instabilities occur[
When an RMF is applied\ there will be a critical value of
the magnetic Taylor number where instabilities of the
Taylor vortex!type might also be expected[ This paper is
concerned with ~ow below this critical value\ where
Stokes ~ow or weakly non!linear ~ow exists[

This paper _rst presents the magnetic _eld\ electro!
magnetic force\ and ~uid ~ow generated by an RMF in
an isothermal vertical cylinder ð4Ł[ The dependence of the
electromagnetic force and ~uid ~ow on the skin depth is
examined[ The onset of steady thermal convection is then

calculated\ using linear stability analysis and the Bous!
sinesq approximation[ The solutions to this problem are
based on expansions of eigenfunctions which are them!
selves solutions to the thermoconvective stability prob!
lem without an RMF applied[ The nature of the con!
vection and temperature distributions at the onset of
convection are described[ Finally\ the limitations of the
calculations and the circumstances of their applicability
are discussed[

1[ Electromagnetic _eld equations

We consider an incompressible liquid metal of elec!
trical conductivity s inside a cylinder of in_nite vertical
extent and radius r9[ A rotating magnetic _eld with an
induction B9 and angular frequency v is applied to the
~uid[ It is convenient to work with complex numbers\
with the real parts corresponding to the physical quan!
tities[ As r : �\ the imposed magnetic _eld can be writ!
ten as

Br:� �"r¼−i8¼ #B9 ei"vt−8# "0#

where t is time and r¼ and 8¼ are unit vectors in the cyl!
indrical coordinate system[ The cylindrical coordinates
"r\ 8\ z# used to describe the system and the imposed
external magnetic _eld are shown in Fig[ 0[ The magnetic
_eld and resulting ~uid ~ow are con_ned to the "r\ 8#
plane[

The advectionÐdi}usion equation describing the mag!
netic _eld distribution inside the cylinder is

1B

1t
� 9×"v×B#¦

0
m9s

91B "1#

where v is the ~uid velocity and m9 is the permeability of
free space[ The ratio of the convective to di}usive terms
scales as the magnetic Reynolds number

Rm � m9sr9v[ "2#

When Rm is small compared to unity\ the v×B term can
be neglected[ This is the case for most practical laboratory

Fig[ 0[ Schematic of the physical system[ The cylinder is _lled
with liquid metal and the applied external magnetic _eld B9

rotates with angular frequency v in the 8!direction[
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applications and corresponds to the situation where the
in~uence of the ~uid ~ow on the magnetic _eld can be
neglected[ This so!called {solid body approximation| will
be adopted here[ We seek a solution of the form

B � Brr¼¦B88¼ "3#

where

Br � br"r# ei"vt−8#\ B8 � b8"r# ei"vt−8#[ "4#

The solution must satisfy equation "0# and B must be
continuous at r9[ Also\ from the symmetry of the problem\

1B

1z
� Bz � 9[ "5#

The total magnetic _eld can then be calculated from the
following equations]

91B �
i

d1
B\ 9 = B� 9\ for r ¾ r9 "6#

9×B � 9\ 9 = B� 9\ for r × r9 "7#

where the skin depth d �"svm9#−0:1[ The solution for the
magnetic _eld distribution inside the cylinder is

br �
1B9d

r e2pi:3

J0 0
r
d

e2pi:31
J9"K e2pi:3#

�
1B9d

r e2pi:3

ber0"r:d#¦i bei0"r:d#
ber9"K#¦i bei9"K#

"8#

b8 � −i
1

1r
"rbr#

� −1iB9 0"ber9"r:d#¦i bei9"r:d##

−e
−2pi

3
d

r
"ber0"r:d#¦i bei0"r:d##1

ber9"K#¦i bei9"K#
[ "09#

Outside the cylinder

br � B9−
B9r

1
9

r1 00−
1"ber0"K#¦i bei0"K##

e2pi:3K"ber9"K#¦i bei9"K##1 "00#

b8 � −iB9¦
iB9r

1
9

r1 00−
1"ber0"K#¦i bei0"K##

e2pi:3K"ber9"K#¦i bei9"K##1
"01#

where K � r9:d is the dimensionless skin depth parameter
and J9 and J0 are Bessel functions[ The real and imaginary
parts of Jn"x e2pi:3# are denoted by bern "x# and bein "x#[

The induced electric current density is calculated from
the equation

j �
0
m9

9×B[ "02#

The only non!vanishing component is

jz �
−1B9 epi:3

m9d 0
ber0"r:d#¦i bei0"r:d#
ber9"K#¦i bei9"K# 1 ei"vt−8#[ "03#

The two non!vanishing components of the Lorentz force
are obtained from the following formulas]

Fr � −Re" jz# Re"B8#\ F8 � Re" jz# Re"Br#[ "04#

These equations result in both a time!independent com!
ponent of force and an oscillatory component of fre!
quency 1v[ The oscillatory component of the force
induces\ in general\ an oscillatory motion of the ~uid[
However\ the inertia of the ~uid will not allow it to follow
the relatively high frequency oscillating force component
and the amplitude of the oscillating ~ow will be negligible
ð06Ł[ The time averaged value of this oscillating force
component can also be non!zero due to the presence
of the nonlinear advection term in the NavierÐStokes
equations[ However\ for purely azimuthal ~ow\ this
advection term is zero\ and therefore the oscillating force
will not generate any stationary ~ow components[ The r!
component of force is compensated by a change in the
pressure and does not a}ect the ~uid motion[ Thus\ the
only force which drives ~uid motion is the time!inde!
pendent 8!component

F8 �
1B1

9

m9r 0
ber1

0"r:d#¦bei10"r:d#

ber1
9"K#¦bei19"K# 1 [ "05#

The dependence of F8 on r for three di}erent values of K
is shown in Fig[ 1[ F8 is normalized by

F9 �
1B1

9

m9r9

[ "06#

For small values of K\ F8 is a linear function of r[ As K
increases\ the force is con_ned more and more to near
the cylinder wall[ It should also be noted that for each
value of r ³ r9\ there is a _nite value of K for which F8

reaches a maximum[

2[ Azimuthal ~uid ~ow

The azimuthal velocity is independent of both 8 and t[
The NavierÐStokes equation can be written]

Fig[ 1[ Azimuthal Lorentz force vs[ r[
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Lv8 � −
F8

nr
\ "07#

where n is the kinematic viscosity\ r is the density\ and

L �
1

1r
0
r

1

1r
r[ "08#

The solution to equation "07# can be written

v8 �
v9K

1r
r9D

s
�

n�9

"0−"r:r9#3n¦1#"K:1#3n

"1n¦0#"n¦0#;"n¦0#;"1n¦0#;
"19#

where

v9 �
B1

9r9

05m9nr
"10#

and D � ber1
9"K#¦bei19"K#[ In the low frequency

approximation\ only the leading term of the series expan!
sion needs to be kept]

v8 �
B1

9vs

05nr
r"r1

9−r1#[ "11#

In the high frequency approximation\ when K Ł 0\

v8 �
B1

9

K1nrm9
0r−r9e−z1K00−

r
r911 [ "12#

Both the magnitude and frequency of the applied mag!
netic _eld can be modi_ed to a}ect the ~uid ~ow[ These
properties of the magnetic _eld have been separated in
equation "19# with v9 � B1

9 and K � v−0:1[ By keeping v
constant\ the dependence of v8 on K can be determined[
This is shown in Fig[ 2\ where vmax

8 is plotted as function
of K[ The maximum value of v8 occurs at di}erent values
of r\ depending on K[ For a _xed magnetic _eld strength\
the maximum ~uid rotation is obtained when K � 1[24[
The dependence of v8 on r is shown in Fig[ 3[ For K much
less than 0\ v8:vmax

8 is essentially independent of K[ As K
becomes larger\ vmax

8 occurs at increasingly larger values
of r[

3[ Thermoconvective stability analysis

We now consider the onset of natural convection in
the ~uid when a negative temperature gradient is applied[

Fig[ 2[ Maximum azimuthal ~uid velocity vs[ K[

Fig[ 3[ Azimuthal ~uid velocity vs[ r for K � 0 and K � 09[

The initial velocity\ temperature\ pressure\ and density
distributions are

vr � vz � 9\ v8 "13#

T9 � Tc−bz "14#

9P9 � −r9"0¦abz#`z¼¦Frr¼ "15#

r � r9"0¦abz# "16#

where v8 is the azimuthal velocity resulting from the
application of a rotating magnetic _eld and is de_ned in
equation "19#\ Tc is a reference temperature\ b is the
negative temperature gradient\ a is the coe.cient of ther!
mal expansion\ ` is the acceleration of gravity\ and Fr is
de_ned in equation "04#[ The initial velocity\ tempera!
ture\ and pressure are perturbed by V?[ T?\ and P?\ and
substituted into the NavierÐStokes and heat transfer
equations[ Neglecting products of perturbation terms\
the z!component of the NavierÐStokes perturbation
equation and the heat transfer equation become

1V?z
1t

¦
v8

r
1V?z
18

� `aT?¦n91V?z "17#

1T?
1t

¦
v8

r
1T?
18

� bV?z¦k91T? "18#

where k is the thermal di}usivity[ The r! and 8!com!
ponents of the perturbed velocity do not couple to the
perturbed temperature and need not be considered
further[

The stationary spectral modes which are solutions to
this problem can be written in the form

V?z"r\ 8\ z# � V?n\m\k"r# eim"v¹ t−8# eikz¦cc "29#

T?"r\ 8\ z# � T?n\m\k"r# eim"v¹ t−8# eikz¦cc "20#

where n and m are discrete modal indices\ k is a con!
tinuous index\ and v¹ is a characteristic rotational fre!
quency which yet needs to be determined[ It has been
proven mathematically by Proctor ð07Ł that the case of
k � 9 corresponds to the lowest eigenvalue for a given
set of indices "n\ m#[ We therefore set k � 9[

Given the form of the solutions in equations "29# and
"20#\ equations "17# and "18# can be written



M[P[ Volz\ K[ Mazuruk:Int[ J[ Heat Mass Transfer 31 "0888# 0926Ð0934 0930

"Lm¦im"V−v¹ ##V � −RaT "21#

"Lm¦imP"V−v¹ ##T � −V "22#

where

Lm �
11

1r1
¦

0
r

1

1r
−

m1

r
"23#

V � v8:r\ P is the Prandtl number\ Ra is the Rayleigh
number with r9 used as the length scale\ V is the perturbed
velocity in the z!direction\ T is the perturbed temperature\
and both V and T are functions of r only[ The above
equations are non!dimensionalized by scaling the length\
frequency\ velocity\ pressure\ and temperature with r9\
n:r1

9\ n:r9\ rn1:r1
9\ and br9n:k\ respectively[ Equations "21#

and "22# are solved for the case of adiabatic sidewalls
with boundary conditions

V � T � 9\ at r � 9 "24#

V �
1T
1r

� 9\ at r � 0[ "25#

We _rst develop a series of functions Vn\m and Tn\m

upon which the solution of V and T will be expanded[
The functions are solutions of the following simpli_ed
system]

LmVn\m � −b1
n\mTn\m "26#

LmTn\m � −b1
n\mVn\m "27#

where bn\m are eigenvalues to be determined[ These equa!
tions describe the thermoconvective problem in a vertical
cylinder when no RMF is applied[ The boundary con!
ditions "24#Ð"25# imposed on V and T are also imposed
on Vn\m and Tn\m\ respectively[ The solutions of this eig!
envalue problem are

Vn\m �
0

zqn\m

ðIm"bn\m#Jm"bn\mr#−Jm"bn\m#Im"bn\mr#Ł

"28#

Tn\m �
0

zqn\m

ðIm"bn\m#Jm"bn\mr#¦Jm"bn\m#Im"bn\mr#Ł

"39#

where Im is a modi_ed Bessel function

qn\m � J1
m"bn\m#Im−0"bn\m#Im¦0"bn\m# "30#

and qn\m are normalization coe.cients such that the above
system of eigenfunctions is orthonormal in the following
sense]

g
0

9

Vn\m"r#TN\m"r#r dr � dnN[ "31#

The eigenvalues bn\m are solutions of the following equa!
tion]

1

1b
ðIm"b#Jm"b#Ł � 9[ "32#

The solutions of V and T can be expanded into the
above set of functions]

V �s
n

An\mVn\m\ T �s
n

Cn\mTn\m "33#

where An\m and Cn\m are complex coe.cients which need
to be determined[ Using the orthonormality condition\
the following system of matrix equations are obtained]

RaCN\m � b1
N\mAN\m¦im s

n

An\m"v¹ ðVN\m = Vn\mŁ

−ðVN\m =V=Vn\mŁ#\ "34#

AN\m � b1
N\mCN\m¦imP s

n

Cn\m"v¹ ðTN\m = Tn\mŁ

−ðTN\m =V=Tn\mŁ#\ "35#

where

ðVN\m = Vn\mŁ � g
0

9

VN\mVn\mr de\ ðVN\m =V=Vn\mŁ

� g
0

9

VN\mVVn\mr dr\ etc[ "36#

The coe.cients An\m can be eliminated from equations
"34#Ð"35# resulting in

M"v¹ # = C � Ra = C "37#

where C is an eigenvector with elements Cn\m and the
matrix elements M"v¹ # for a given m are

MNn � s
l

"b1
N\mdNl¦imv¹ ðVN\m = Vl\mŁ

−imðVN\m =V=Vl\mŁ#"b1
l\mdln¦imPv¹ ðTl\m = Tn\mŁ

−imPðTl\m =V=Tn\mŁ#[ "38#

Equation "37# represents an eigenvalue problem which
can be solved numerically[ The matrix M"v¹ # is shown
explicitly as a function of v¹ because there are actually a
pair of eigenvalues\ v¹ and Rac\ where Rac represents
the critical Rayleigh numbers\ which are solutions of
equation "37#[ Both v¹ and Rac must be real\ and for each
value of Rac there will be a value of v¹ associated with it[
Numerically\ we can solve equation "37# by varying v¹
until the eigenvalues Rac become real[ The eigenvector C
is also obtained from this procedure[ By substituting the
solutions back into equations "33#Ð"35#\ V and T can be
calculated[

Before discussing the calculational results\ it is useful
to describe the roles of the parameters involved[ There
are three independent variables] K\ the dimensionless skin
depth^ P\ the Prandtl number^ and the magnetic Taylor
number Tm which is a measure of the azimuthal ~uid
velocity induced by the rotating magnetic _eld where

Tm �
r3
9B

1
9vs

1rn1
[ "49#

For each set of independent variables the two resultant
eigenvalues are Rac and v¹ [ The size of the matrix MNn



M[P[ Volz\ K[ Mazuruk:Int[ J[ Heat Mass Transfer 31 "0888# 0926Ð09340931

Table 0
Eigenvalues and critical Rayleigh numbers in a vertical cylinder
when no RMF is applied

n m b Rac

0 0 1[760 56[85
0 1 3[148 217[8
0 9 3[500 341[9
0 2 4[430 831[4
1 0 5[034 0315
0 3 5[660 1091
1 1 6[460 2175
1 9 6[688 2699

required to accurately calculate the eigenvalues for a
given value of m increased as a function of Tm[ For
Tm � 095\ the largest value of Tm for which the eig!
envalues were calculated\ a 49×49 matrix was used[ This
resulted in an upper bound to the error of the eigenvalues
of 29[2)[

The zeroth order solution to this problem describes the
situation when no rotating magnetic _eld is applied and
v¹ � V � 9[ Then\ Rac

n\m � b3
n\m[ The _rst several lowest

values of bn\m and Rac
n\m are listed in Table 0[ The values

of Rac
n\m agree with those obtained previously ð05Ł[

We now consider the calculational results in the low
frequency regime\ with K � 9[0\ and with a Prandtl num!
ber appropriate for liquid metals\ P � 9[91[ Figure 4 is a
plot of the _rst few values of Rac as a function of Tm[
The dashed lines are the value of Rac for axisymmetric
"m � 9# motion and the solid lines are the values of Rac

for non!axisymmetric "m � 9# motion[ The indices "n\ m#
are shown for the lowest several modes[ As with cylinder

Fig[ 4[ Critical Rayleigh numbers as a function of magnetic
Taylor number[ The solid "dashed# lines are for non!axi!
symmetric "axisymmetric# ~ow modes[ The indices "n\ m# are
shown for the lowest few modes[

rotation ð05Ł\ the application of an RMF has no in~uence
on the thermoconvective stability of axisymmetric ~ow
modes[ But the application of an RMF clearly increases
Rac for non!axisymmetric modes[ Figure 5 is a plot of
the eigenvalues v¹ which correspond to the eigenvalues of
Rac for non!axisymmetric ~ow modes shown in Fig[ 4[ all
of the eigenvalues v¹ depend linearly on Tm for Tm ³ 092[
Above that value\ the eigenvalues of v¹ for which n � 0
diverge from that linear dependence[ It is perhaps useful
to discuss what v¹ corresponds to physically[ Unlike V\ v¹
is not a function of r[ Rather\ v¹ is the angular frequency
with which the velocity in the z!direction and the tem!
perature pro_le rotate about the z!axis in the v¹ !direction[
for Tm ³ 092\ v¹ is of the same order of magnitude as the
angular frequency V averaged over r[

Figure 6 shows the velocity pro_les at the _rst critical
Rayleigh number for several values of Tm[ The pro_les
were calculated with K � 9[0 and P � 9[91[ At the onset
of convection\ there is an upswelling of warmer ~uid on
one side of the cylinder and a downswelling of cooler
~uid on the other[ The normalized velocity in the z!
direction as a function of r is shown on the left!hand!
side[ As Tm increases\ the increased azimuthal rotation
of the ~uid forces V nearer the cylinder wall[ On the right!
hand!side of _g[ 6 is a top!down view of Vmax and Vmin\
where Vmax and Vmin correspond to those positions\ as a
function of r and v¹ \ where V reaches a maximum and
minimum value\ respectively[ As Tm increases\ a swirling
e}ect occurs[ Both Vmax and Vmin occur at smaller values
of v¹ as r decreases[ It should also be noted that each of
the ~ow patterns observed rotates about the cylinder with
frequency v¹ [

Figure 7 shows the lowest value of Rac vs[ Tm for four
values of K and for P � 9[91[ For a given value of Tm\
Rac increases with decreasing K[ This trend continues for

Fig[ 5[ Rotation frequencies of non!axisymmetric thermo!
convective rolls vs[ magnetic Taylor number[ The values of v¹
correspond to the _rst few critical Rayleigh numbers shown in
Fig[ 4[
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Fig[ 6[ Velocity pro_les in the z!direction at the _rst critical
Rayleigh number for several values of magnetic Taylor number[
The left!hand!side shows the normalized velocity as a function
of r[ The right!hand!side shows the position of the maximum
and minimum ~ow velocity as a function of r and 8[ The pro_les
were calculated with K � 9[0 and P � 9[91[

Fig[ 7[ Critical Rayleigh number vs[ magnetic Taylor number
for P � 9[91 and several values of K[

values of K down to approximately 0[ For K � 0\ the
penetration depth of the magnetic _eld is equal to the
cylinder radius and further decreases in K will not
increase the average force driving ~uid rotation[ There!

fore\ for K ³ 0 the dependence of Rac on Tm does not
signi_cantly change from that shown for K � 0[ Figure 8
shows the eigenvalues v¹ corresponding to the eigenvalues
Rac shown in Fig[ 7[ For smaller values of Tm\
v¹ � Tm � B1

9[ The scaling of the roll frequency on the
magnetic strength squared is consistent with the theor!
etical predictions of laminar ~ow generated by an RMF
ð3Ł[

The dependence of the onset of instability as a function
of Prandtl number is shown in Fig[ 09[ The data curves
were obtained with K � 9[0[ The _gure shows the _rst
critical Rayleigh number\ although higher modes may be
triggered _rst for larger Tm[ Clearly\ an RMF is more

Fig[ 8[ Rotation frequency vs[ magnetic Taylor number for
P � 9[91 and several values of K[

Fig[ 09[ Critical Rayleigh number vs[ magnetic Taylor number
for K � 9[0 and several values of Prandtl number[
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e}ective at increasing Rac for ~uids with larger Prandtl
numbers[ Figure 00 shows the pro_les of the maximum
velocity and temperature for K � 9[0 and Tm � 092[ For
P � 9[91\ the curvature in Tmax is less than that for Vmax[
This is a result of the relatively high thermal di}usivity
of ~uids with P � 9[91[ The pro_le of Tmax also tends to
stay in close proximity to Vmax[ For P � 1\ the amount of
curvature in Vmax and Tmax is roughly equal[ A signi_cant
angular displacement between Vmax and Tmax also exists[
The relative curvature and angular displacement between
Vmax and Tmax both vary as a function of P and Tm[ Both
Vmax and Tmax rotate about the cylinder with rotation
frequency v¹ [

4[ Discussion

The azimuthal velocity in the preceding sections was
calculated based on the assumption that the v×B term
could be neglected in comparison to the electric _eld
induced by the external magnetic _eld[ This approxi!
mation is valid when ð08Ł

Rm
m9svr9

³ 0 for K ð 0 "40#

Rm ³ 0 for K Ł 0[ "41#

Substituting the azimuthal velocity from equations "11#
and "12# into these expressions yields

Ha1

21
³ 0 for K ð 0 "42#

1Ha1

K1
³ 0 for K Ł 0 "43#

where Ha is the Hartmann number de_ned as

Fig[ 00[ The position of the maximum temperature and velocity
in the z!direction as a function of r and 8[ The pro_les were
calculated with K � 9[0 and Tm � 0999[

Ha � B9r9X s

rn
[ "44#

For typical values r9 � 9[90 m\ v � 1p×59 s−0\ and
n � 2×09−6 m1 s−0\ we _nd that the approximations
employed are valid when Tm ³ O"095#[

The stability analysis assumed a base ~ow state which
is nonzero in the 8!direction[ This is correct for the
presently considered geometry but is not strictly true
as the aspect ratio of the cylinder decreases[ For _nite
cylinders\ vr and vz are also nonzero\ and the ratio of vr

and vz to v8 increases as Tm increases[ Nevertheless\ even
for Tm as large as 094\ the angular velocity of the
meridional ~ow is less than 1) of the base azimuthal
~ow ð6Ł[

The preceding sections have addressed the issue of the
Rayleigh instability of ~uid driven by an RMF[ A second
form of instability which can occur is that of Reynolds
instability[ The rotating ~uid will become unstable at
some speci_c magnetic Taylor number\ an e}ect which is
similar to that of Taylor instability in a rotating cylinder[
The critical value of Tm at which Reynolds instability
occurs is a function of the aspect ratio and decreases as
the aspect ratio increases ð05Ł[ It was found that for an
aspect ratio of 0\ Tmc � 5[1×094\ and for an aspect ratio
of 5\ Tmc � 0[2×094[ The calculations of Rayleigh insta!
bility and ~uid ~ow presented here only have validity
when Tm ³ Tmc[

The laminar ~ow regime where Tm ³ Tmc has been
examined recently both by experiments ð09Ł and numeri!
cal calculations ð6Ł[ Experimentally\ temperature ~uc!
tuations were measured at Rayleigh numbers above Rac

as a function of magnetic _eld strength[ The frequency
of the ~uctuations corresponded to the roll frequency v¹ [
It was found that v¹ � B1

9 for magnetic _eld strengths up
to those corresponding to Tm � 093[ Numerically\ the
dependence of the azimuthal rotation frequency V on
Tm changed from V � Tm to V � Tm9[51 for Tm × 092[
Although the validity of the calculational results reported
here are limited to the laminar regime\ it is in this ~ow
regime that the application of an RMF during single
crystal growth might prove to be most useful[ The occur!
rence of time!dependent convection can introduce del!
eterious e}ects in the grown crystals[ In fact\ recent crys!
tal growth experiments were done with an RMF strength
small enough to avoid time!dependent convection[ For
example\ gallium!doped germanium crystals were grown
by the Bridgman method in an RMF with Tm � 7[4×093

ð2Ł and CdTe was grown from a tellurium solution by the
travelling heater method during the Photon 6 micro!
gravity mission with Tm � 1[7×093 ð0Ł[ Thus\ the cal!
culational results in the laminar regime are pertinent to
understanding stability behavior during crystal growth
processes when an RMF is applied\ and can serve as a
baseline to which further re_nements of the theory can
be compared[
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